C++面对对象笔记整理:
内存分区: C++程序在执行时,将内存大方向划分为4个区域
代码区:存放函数体的二进制代码,由操作系统进行管理的
全局区:存放全局变量和静态变量以及常量
栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收
内存四区意义:
不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程
代码区:
全局区:
程序运行前 示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 int g_a = 10 ;int g_b = 10 ;const int c_g_a = 10 ;const int c_g_b = 10 ;int main () { int a = 10 ; int b = 10 ; cout << "局部变量a地址为: " << (int )&a << endl; cout << "局部变量b地址为: " << (int )&b << endl; cout << "全局变量g_a地址为: " << (int )&g_a << endl; cout << "全局变量g_b地址为: " << (int )&g_b << endl; static int s_a = 10 ; static int s_b = 10 ; cout << "静态变量s_a地址为: " << (int )&s_a << endl; cout << "静态变量s_b地址为: " << (int )&s_b << endl; cout << "字符串常量地址为: " << (int )&"hello world" << endl; cout << "字符串常量地址为: " << (int )&"hello world1" << endl; cout << "全局常量c_g_a地址为: " << (int )&c_g_a << endl; cout << "全局常量c_g_b地址为: " << (int )&c_g_b << endl; const int c_l_a = 10 ; const int c_l_b = 10 ; cout << "局部常量c_l_a地址为: " << (int )&c_l_a << endl; cout << "局部常量c_l_b地址为: " << (int )&c_l_b << endl; system ("pause" ); return 0 ; }
总结:
C++中在程序运行前分为全局区和代码区
代码区特点是共享和只读
全局区中存放全局变量、静态变量、常量
常量区中存放 const修饰的全局常量 和 字符串常量
全局变量、静态变量、全局常量的地址&隔得比较近
程序运行后 栈区:
由编译器自动分配释放, 存放函数的参数值,局部变量等
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 int * func () { int a = 10 ; return &a; } int main () { int *p = func (); cout << *p << endl; cout << *p << endl; system ("pause" ); return 0 ; }
总结 :栈区由编译器自动分配释放, 存放函数的参数值,局部变量等
堆区:
由程序员分配释放,若程序员不释放,程序结束时由操作系统回收
在C++中主要利用new在堆区开辟内存
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 int * func () { int * a = new int (10 ); return a; } int main () { int *p = func (); cout << *p << endl; cout << *p << endl; system ("pause" ); return 0 ; }
总结:
堆区数据由程序员管理开辟和释放
堆区数据利用new关键字进行开辟内存
new操作符 C++中利用new 操作符在堆区开辟数据
堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操作符 delete
语法: new 数据类型
利用new创建的数据,会返回该数据对应的类型的指针
示例1: 基本语法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 int * func () { int * a = new int (10 ); return a; } int main () { int *p = func (); cout << *p << endl; cout << *p << endl; delete p; system ("pause" ); return 0 ; }
示例2:开辟数组
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 int main () { int * arr = new int [10 ]; for (int i = 0 ; i < 10 ; i++) { arr[i] = i + 100 ; } for (int i = 0 ; i < 10 ; i++) { cout << arr[i] << endl; } delete [] arr; system ("pause" ); return 0 ; }
引用 引用的基本使用 **作用: **给变量起别名
语法: 数据类型 &别名 = 原名
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 int main () { int a = 10 ; int &b = a; cout << "a = " << a << endl; cout << "b = " << b << endl; b = 100 ; cout << "a = " << a << endl; cout << "b = " << b << endl; system ("pause" ); return 0 ; }
引用注意事项
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main () { int a = 10 ; int b = 20 ; int &c = a; c = b; cout << "a = " << a << endl; cout << "b = " << b << endl; cout << "c = " << c << endl; system ("pause" ); return 0 ; }
引用做函数参数 作用: 函数传参时,可以利用引用的技术让形参修饰实参
优点: 可以简化指针修改实参
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 void mySwap01 (int a, int b) { int temp = a; a = b; b = temp; } void mySwap02 (int * a, int * b) { int temp = *a; *a = *b; *b = temp; } void mySwap03 (int & a, int & b) { int temp = a; a = b; b = temp; } int main () { int a = 10 ; int b = 20 ; mySwap01 (a, b); cout << "a:" << a << " b:" << b << endl; mySwap02 (&a, &b); cout << "a:" << a << " b:" << b << endl; mySwap03 (a, b); cout << "a:" << a << " b:" << b << endl; system ("pause" ); return 0 ; }
总结:通过引用参数产生的效果同按地址传递是一样的。引用的语法更清楚简单
引用做函数返回值 作用:引用是可以作为函数的返回值存在的
注意:不要返回局部变量引用
用法:函数调用作为左值
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 int & test01 () { int a = 10 ; return a; } int & test02 () { static int a = 20 ; return a; } int main () { int & ref = test01 (); cout << "ref = " << ref << endl; cout << "ref = " << ref << endl; int & ref2 = test02 (); cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; test02 () = 1000 ; cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; system ("pause" ); return 0 ; }
引用的本质 本质:引用的本质在c++内部实现是一个指针常量.
讲解示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 void func (int & ref) { ref = 100 ; } int main () { int a = 10 ; int & ref = a; ref = 20 ; cout << "a:" << a << endl; cout << "ref:" << ref << endl; func (a); return 0 ; }
结论:C++推荐用引用技术,因为语法方便,引用本质是指针常量,但是所有的指针操作编译器都帮我们做了
常量引用 作用: 常量引用主要用来修饰形参,防止误操作
在函数形参列表中,可以加==const修饰形参==,防止形参改变实参
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 void showValue (const int & v) { cout << v << endl; } int main () { const int & ref = 10 ; cout << ref << endl; int a = 10 ; showValue (a); system ("pause" ); return 0 ; }
函数提高 函数默认参数 在C++中,函数的形参列表中的形参是可以有默认值的。
语法: 返回值类型 函数名 (参数= 默认值){}
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 int func (int a, int b = 10 , int c = 10 ) { return a + b + c; } int func2 (int a = 10 , int b = 10 ) ;int func2 (int a, int b) { return a + b; } int main () { cout << "ret = " << func (20 , 20 ) << endl; cout << "ret = " << func (100 ) << endl; cout << func2 (10 ,10 )<<endl; cout << func2 ()<<endl; system ("pause" ); return 0 ; }
函数占位参数 C++中函数的形参列表里可以有占位参数,用来做占位,调用函数时必须填补该位置
语法: 返回值类型 函数名 (数据类型){}
在现阶段函数的占位参数存在意义不大,但是后面的课程中会用到该技术
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 void func (int a, int ) { cout << "this is func" << endl; } int main () { func (10 ,10 ); system ("pause" ); return 0 ; }
函数重载 函数重载概述 作用: 函数名可以相同,提高复用性
函数重载满足条件:
同一个作用域下
函数名称相同
函数参数类型不同 或者 个数不同 或者 顺序不同
注意: 函数的返回值不可以作为函数重载的条件
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 void func () { cout << "func 的调用!" << endl; } void func (int a) { cout << "func (int a) 的调用!" << endl; } void func (double a) { cout << "func (double a)的调用!" << endl; } void func (int a ,double b) { cout << "func (int a ,double b) 的调用!" << endl; } void func (double a ,int b) { cout << "func (double a ,int b)的调用!" << endl; } int main () { func (); func (10 ); func (3.14 ); func (10 ,3.14 ); func (3.14 , 10 ); system ("pause" ); return 0 ; }
函数重载注意事项
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 void func (int &a) { cout << "func (int &a) 调用 " << endl; } void func (const int &a) { cout << "func (const int &a) 调用 " << endl; } void func2 (int a, int b = 10 ) { cout << "func2(int a, int b = 10) 调用" << endl; } void func2 (int a) { cout << "func2(int a) 调用" << endl; } int main () { int a = 10 ; func (a); func (10 ); system ("pause" ); return 0 ; }
类和对象 C++面向对象的三大特性为:==封装、继承、多态==
C++认为==万事万物都皆为对象==,对象上有其属性和行为
例如:
人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌…
车也可以作为对象,属性有轮胎、方向盘、车灯…,行为有载人、放音乐、放空调…
具有相同性质的==对象==,我们可以抽象称为==类==,人属于人类,车属于车类
封装 封装的意义 封装是C++面向对象三大特性之一
封装的意义:
将属性和行为作为一个整体,表现生活中的事物
将属性和行为加以权限控制
封装意义一:
在设计类的时候,属性和行为写在一起,表现事物
语法: class 类名{ 访问权限: 属性 / 行为 };
示例1: 设计一个圆类,求圆的周长
示例代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 const double PI = 3.14 ;class Circle { public : int m_r; double calculateZC () { return 2 * PI * m_r; } }; int main () { Circle c1; c1.m_r = 10 ; cout << "圆的周长为: " << c1.calculateZC () << endl; system ("pause" ); return 0 ; }
示例2: 设计一个学生类,属性有姓名和学号,可以给姓名和学号赋值,可以显示学生的姓名和学号
示例2代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 class Student {public : void setName (string name) { m_name = name; } void setID (int id) { m_id = id; } void showStudent () { cout << "name:" << m_name << " ID:" << m_id << endl; } public : string m_name; int m_id; }; int main () { Student stu; stu.setName ("德玛西亚" ); stu.setID (250 ); stu.showStudent (); system ("pause" ); return 0 ; }
封装意义二:
类在设计时,可以把属性和行为放在不同的权限下,加以控制
访问权限有三种:
public 公共权限
protected 保护权限
private 私有权限
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 class Person { public : string m_Name; protected : string m_Car; private : int m_Password; public : void func () { m_Name = "张三" ; m_Car = "拖拉机" ; m_Password = 123456 ; } }; int main () { Person p; p.m_Name = "李四" ; p.func (); system ("pause" ); return 0 ; }
struct和class区别 在C++中 struct和class唯一的区别 就在于 默认的访问权限不同
区别:
struct 默认权限为公共
class 默认权限为私有
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 class C1 { int m_A; }; struct C2 { int m_A; }; int main () { C1 c1; c1.m_A = 10 ; C2 c2; c2.m_A = 10 ; system ("pause" ); return 0 ; }
成员属性设置为私有 优点1: 将所有成员属性设置为私有,可以自己控制读写权限
优点2: 对于写权限,我们可以检测数据的有效性
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 class Person {public : void setName (string name) { m_Name = name; } string getName () { return m_Name; } int getAge () { return m_Age; } void setAge (int age) { if (age < 0 || age > 150 ) { cout << "你个老妖精!" << endl; return ; } m_Age = age; } void setLover (string lover) { m_Lover = lover; } private : string m_Name; int m_Age; string m_Lover; }; int main () { Person p; p.setName ("张三" ); cout << "姓名: " << p.getName () << endl; p.setAge (50 ); cout << "年龄: " << p.getAge () << endl; p.setLover ("苍井" ); system ("pause" ); return 0 ; }
对象的初始化和清理
生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。
构造函数和析构函数 对象的初始化和清理 也是两个非常重要的安全问题
一个对象或者变量没有初始状态,对其使用后果是未知
同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题
c++利用了构造函数 和析构函数 解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。
对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供
编译器提供的构造函数和析构函数是空实现。
构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
析构函数:主要作用在于对象销毁前 系统自动调用,执行一些清理工作。
构造函数语法: 类名(){}
构造函数,没有返回值也不写void
函数名称与类名相同
构造函数可以有参数,因此可以发生重载
程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次
析构函数语法: ~类名(){}
析构函数,没有返回值也不写void
函数名称与类名相同,在名称前加上符号 ~
析构函数不可以有参数,因此不可以发生重载
程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 class Person { public : Person () { cout << "Person的构造函数调用" << endl; } ~Person () { cout << "Person的析构函数调用" << endl; } }; void test01 () { Person p; } int main () { test01 (); system ("pause" ); return 0 ; }
构造函数的分类及调用 两种分类方式:
按参数分为: 有参构造和无参构造
按类型分为: 普通构造和拷贝构造
三种调用方式:
括号法
显示法
隐式转换法
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 class Person {public : Person () { cout << "无参构造函数!" << endl; } Person (int a) { age = a; cout << "有参构造函数!" << endl; } Person (const Person& p) { age = p.age; cout << "拷贝构造函数!" << endl; } ~Person () { cout << "析构函数!" << endl; } public : int age; }; void test01 () { Person p; } void test02 () { Person p1 (10 ) ; Person p2 = Person (10 ); Person p3 = Person (p2); Person p4 = 10 ; Person p5 = p4; } int main () { test01 (); system ("pause" ); return 0 ; }
拷贝构造函数调用时机 C++中拷贝构造函数调用时机通常有三种情况
使用一个已经创建完毕的对象来初始化一个新对象
值传递的方式给函数参数传值
以值方式返回局部对象
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 class Person {public : Person () { cout << "无参构造函数!" << endl; mAge = 0 ; } Person (int age) { cout << "有参构造函数!" << endl; mAge = age; } Person (const Person& p) { cout << "拷贝构造函数!" << endl; mAge = p.mAge; } ~Person () { cout << "析构函数!" << endl; } public : int mAge; }; void test01 () { Person man (100 ) ; Person newman (man) ; Person newman2 = man; } void doWork (Person p1) {}void test02 () { Person p; doWork (p); } Person doWork2 () { Person p1; cout << (int *)&p1 << endl; return p1; } void test03 () { Person p = doWork2 (); cout << (int *)&p << endl; } int main () { test03 (); system ("pause" ); return 0 ; }
构造函数调用规则 默认情况下,c++编译器至少给一个类添加3个函数
1.默认构造函数(无参,函数体为空)
2.默认析构函数(无参,函数体为空)
3.默认拷贝构造函数,对属性进行值拷贝
构造函数调用规则如下:
如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造,但要是需要创建一个类对象,必须写上默认无参构造函数
如果用户定义拷贝构造函数,c++不会再提供其他构造函数,默认构造和有参构造均不提供,析构函数还是有
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 class Person {public : Person () { cout << "无参构造函数!" << endl; } Person (int a) { age = a; cout << "有参构造函数!" << endl; } Person (const Person& p) { age = p.age; cout << "拷贝构造函数!" << endl; } ~Person () { cout << "析构函数!" << endl; } public : int age; }; void test01 () { Person p1 (18 ) ; Person p2 (p1) ; cout << "p2的年龄为: " << p2.age << endl; } void test02 () { Person p1; Person p2 (10 ) ; Person p3 (p2) ; Person p4; Person p5 (10 ) ; Person p6 (p5) ; } int main () { test01 (); system ("pause" ); return 0 ; }
深拷贝与浅拷贝 深浅拷贝是面试经典问题,也是常见的一个坑
浅拷贝:简单的赋值拷贝操作
深拷贝:在堆区重新申请空间,进行拷贝操作
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 class Person {public : Person () { cout << "无参构造函数!" << endl; } Person (int age ,int height) { cout << "有参构造函数!" << endl; m_age = age; m_height = new int (height); } Person (const Person& p) { cout << "拷贝构造函数!" << endl; m_age = p.m_age; m_height = new int (*p.m_height); } ~Person () { cout << "析构函数!" << endl; if (m_height != NULL ) { delete m_height; } } public : int m_age; int * m_height; }; void test01 () { Person p1 (18 , 180 ) ; Person p2 (p1) ; cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl; cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
总结:如果属性有在堆区开辟的,一定要自己提供深拷贝构造函数,防止浅拷贝带来的问题
初始化列表 作用:
C++提供了初始化列表语法,用来初始化属性
语法: 构造函数():属性1(值1),属性2(值2)... {}
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 class Person {public : Person (int a, int b, int c) :m_A (a), m_B (b), m_C (c) {} void PrintPerson () { cout << "mA:" << m_A << endl; cout << "mB:" << m_B << endl; cout << "mC:" << m_C << endl; } private : int m_A; int m_B; int m_C; }; int main () { Person p (1 , 2 , 3 ) ; p.PrintPerson (); system ("pause" ); return 0 ; }
类对象作为类成员 C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员
例如:
1 2 3 4 5 class A {}class B { A a; }
B类中有对象A作为成员,A为对象成员
那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 class Phone { public : Phone (string name) { m_PhoneName = name; cout << "Phone构造" << endl; } ~Phone () { cout << "Phone析构" << endl; } string m_PhoneName; }; class Person { public : Person (string name, string pName) :m_Name (name), m_Phone (pName) { cout << "Person构造" << endl; } ~Person () { cout << "Person析构" << endl; } void playGame () { cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl; } string m_Name; Phone m_Phone; }; void test01 () { Person p ("张三" , "苹果X" ) ; p.playGame (); } int main () { test01 (); system ("pause" ); return 0 ; }
静态成员 静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员
静态成员分为:
静态成员变量
所有对象共享同一份数据
在编译阶段分配内存
类内声明,类外初始化
静态成员函数
所有对象共享同一个函数
静态成员函数只能访问静态成员变量
示例1 : 静态成员变量
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 class Person { public : static int m_A; private : static int m_B; }; int Person::m_A = 10 ;int Person::m_B = 10 ;void test01 () { Person p1; p1.m_A = 100 ; cout << "p1.m_A = " << p1.m_A << endl; Person p2; p2.m_A = 200 ; cout << "p1.m_A = " << p1.m_A << endl; cout << "p2.m_A = " << p2.m_A << endl; cout << "m_A = " << Person::m_A << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
示例2: 静态成员函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 class Person { public : static void func () { cout << "func调用" << endl; m_A = 100 ; } static int m_A; int m_B; private : static void func2 () { cout << "func2调用" << endl; } }; int Person::m_A = 10 ;void test01 () { Person p1; p1.func (); Person::func (); } int main () { test01 (); system ("pause" ); return 0 ; }
C++对象模型和this指针 成员变量和成员函数分开存储 在C++中,类内的成员变量和成员函数分开存储
只有非静态成员变量才属于类的对象上
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 class Person {public : Person () { mA = 0 ; } int mA; static int mB; void func () { cout << "mA:" << this ->mA << endl; } static void sfunc () { } }; int main () { cout << sizeof (Person) << endl; system ("pause" ); return 0 ; }
this指针概念 通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的
每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码
那么问题是:这一块代码是如何区分那个对象调用自己的呢?
c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象
this指针是隐含每一个非静态成员函数内的一种指针
this指针不需要定义,直接使用即可
this指针的用途:
当形参和成员变量同名时,可用this指针来区分
在类的非静态成员函数中返回对象本身,可使用return *this
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 class Person { public : Person (int age) { this ->age = age; } Person& PersonAddPerson (Person p) { this ->age += p.age; return *this ; } int age; }; void test01 () { Person p1 (10 ) ; cout << "p1.age = " << p1.age << endl; Person p2 (10 ) ; p2.PersonAddPerson (p1).PersonAddPerson (p1).PersonAddPerson (p1); cout << "p2.age = " << p2.age << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
空指针访问成员函数 C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针
如果用到this指针,需要加以判断保证代码的健壮性
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 class Person {public : void ShowClassName () { cout << "我是Person类!" << endl; } void ShowPerson () { if (this == NULL ) { return ; } cout << mAge << endl; } public : int mAge; }; void test01 () { Person * p = NULL ; p->ShowClassName (); p->ShowPerson (); } int main () { test01 (); system ("pause" ); return 0 ; }
const修饰成员函数 常函数:
成员函数后加const后我们称为这个函数为常函数
常函数内不可以修改成员属性
成员属性声明时加关键字mutable后,在常函数中依然可以修改
常对象:
声明对象前加const称该对象为常对象
常对象只能调用常函数
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 class Person {public : Person () { m_A = 0 ; m_B = 0 ; } void ShowPerson () const { this ->m_B = 100 ; } void MyFunc () const { } public : int m_A; mutable int m_B; }; void test01 () { const Person person; cout << person.m_A << endl; person.m_B = 100 ; person.MyFunc (); } int main () { test01 (); system ("pause" ); return 0 ; }
友元 生活中你的家有客厅(Public),有你的卧室(Private)
客厅所有来的客人都可以进去,但是你的卧室是私有的,也就是说只有你能进去
但是呢,你也可以允许你的好闺蜜好基友进去。
在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术
友元的目的就是让一个函数或者类 访问另一个类中私有成员
友元的关键字为 ==friend==
友元的三种实现
全局函数做友元 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 class Building { friend void goodGay (Building * building) ; public : Building () { this ->m_SittingRoom = "客厅" ; this ->m_BedRoom = "卧室" ; } public : string m_SittingRoom; private : string m_BedRoom; }; void goodGay (Building * building) { cout << "好基友正在访问: " << building->m_SittingRoom << endl; cout << "好基友正在访问: " << building->m_BedRoom << endl; } void test01 () { Building b; goodGay (&b); } int main () { test01 (); system ("pause" ); return 0 ; }
类做友元 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 class Building ;class goodGay { public : goodGay (); void visit () ; private : Building *building; }; class Building { friend class goodGay ; public : Building (); public : string m_SittingRoom; private : string m_BedRoom; }; Building::Building () { this ->m_SittingRoom = "客厅" ; this ->m_BedRoom = "卧室" ; } goodGay::goodGay () { building = new Building; } void goodGay::visit () { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void test01 () { goodGay gg; gg.visit (); } int main () { test01 (); system ("pause" ); return 0 ; }
成员函数做友元 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 class Building ;class goodGay { public : goodGay (); void visit () ; void visit2 () ; private : Building *building; }; class Building { friend void goodGay::visit () ; public : Building (); public : string m_SittingRoom; private : string m_BedRoom; }; Building::Building () { this ->m_SittingRoom = "客厅" ; this ->m_BedRoom = "卧室" ; } goodGay::goodGay () { building = new Building; } void goodGay::visit () { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void goodGay::visit2 () { cout << "好基友正在访问" << building->m_SittingRoom << endl; } void test01 () { goodGay gg; gg.visit (); } int main () { test01 (); system ("pause" ); return 0 ; }
运算符重载 运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型
下面我就拿两个例子简单示例一下,当然还有**++运算符**等重载,有兴趣的小伙伴可以去自己上网或者查询书籍深入了解一下
加号运算符重载 作用:实现两个自定义数据类型相加的运算
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 class Person {public : Person () {}; Person (int a, int b) { this ->m_A = a; this ->m_B = b; } Person operator +(const Person& p) { Person temp; temp.m_A = this ->m_A + p.m_A; temp.m_B = this ->m_B + p.m_B; return temp; } public : int m_A; int m_B; }; Person operator +(const Person& p2, int val) { Person temp; temp.m_A = p2.m_A + val; temp.m_B = p2.m_B + val; return temp; } void test () { Person p1 (10 , 10 ) ; Person p2 (20 , 20 ) ; Person p3 = p2 + p1; cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl; Person p4 = p3 + 10 ; cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl; } int main () { test (); system ("pause" ); return 0 ; }
总结1:对于内置的数据类型的表达式的的运算符是不可能改变的
总结2:不要滥用运算符重载
左移运算符重载 作用:可以输出自定义数据类型
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 class Person { friend ostream& operator <<(ostream& out, Person& p); public : Person (int a, int b) { this ->m_A = a; this ->m_B = b; } private : int m_A; int m_B; }; ostream& operator <<(ostream& out, Person& p) { out << "a:" << p.m_A << " b:" << p.m_B; return out; } void test () { Person p1 (10 , 20 ) ; cout << p1 << "hello world" << endl; } int main () { test (); system ("pause" ); return 0 ; }
总结:重载左移运算符配合友元可以实现输出自定义数据类型
继承 继承是面向对象三大特性之一
我们发现,定义很多类时,下级别的成员除了拥有上一级的共性,还有自己的特性。
这个时候我们就可以考虑利用继承的技术,减少重复代码
继承的基本语法 例如我们看到很多网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不同
接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处
普通实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 class Java { public : void header () { cout << "首页、公开课、登录、注册...(公共头部)" << endl; } void footer () { cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; } void left () { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content () { cout << "JAVA学科视频" << endl; } }; class Python { public : void header () { cout << "首页、公开课、登录、注册...(公共头部)" << endl; } void footer () { cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; } void left () { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content () { cout << "Python学科视频" << endl; } }; class CPP { public : void header () { cout << "首页、公开课、登录、注册...(公共头部)" << endl; } void footer () { cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; } void left () { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content () { cout << "C++学科视频" << endl; } }; void test01 () { cout << "Java下载视频页面如下: " << endl; Java ja; ja.header (); ja.footer (); ja.left (); ja.content (); cout << "--------------------" << endl; cout << "Python下载视频页面如下: " << endl; Python py; py.header (); py.footer (); py.left (); py.content (); cout << "--------------------" << endl; cout << "C++下载视频页面如下: " << endl; CPP cp; cp.header (); cp.footer (); cp.left (); cp.content (); } int main () { test01 (); system ("pause" ); return 0 ; }
继承实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 class BasePage { public : void header () { cout << "首页、公开课、登录、注册...(公共头部)" << endl; } void footer () { cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl; } void left () { cout << "Java,Python,C++...(公共分类列表)" << endl; } }; class Java : public BasePage{ public : void content () { cout << "JAVA学科视频" << endl; } }; class Python : public BasePage{ public : void content () { cout << "Python学科视频" << endl; } }; class CPP : public BasePage{ public : void content () { cout << "C++学科视频" << endl; } }; void test01 () { cout << "Java下载视频页面如下: " << endl; Java ja; ja.header (); ja.footer (); ja.left (); ja.content (); cout << "--------------------" << endl; cout << "Python下载视频页面如下: " << endl; Python py; py.header (); py.footer (); py.left (); py.content (); cout << "--------------------" << endl; cout << "C++下载视频页面如下: " << endl; CPP cp; cp.header (); cp.footer (); cp.left (); cp.content (); } int main () { test01 (); system ("pause" ); return 0 ; }
总结:
继承的好处:==可以减少重复的代码==
class A : public B;
A 类称为子类 或 派生类
B 类称为父类 或 基类
派生类中的成员,包含两大部分 :
一类是从基类继承过来的,一类是自己增加的成员。
从基类继承过过来的表现其共性,而新增的成员体现了其个性。
继承方式 继承的语法:class 子类 : 继承方式 父类
继承方式一共有三种:
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 class Base1 { public : int m_A; protected : int m_B; private : int m_C; }; class Son1 :public Base1{ public : void func () { m_A; m_B; } }; void myClass () { Son1 s1; s1.m_A; } class Base2 { public : int m_A; protected : int m_B; private : int m_C; }; class Son2 :protected Base2{ public : void func () { m_A; m_B; } }; void myClass2 () { Son2 s; } class Base3 { public : int m_A; protected : int m_B; private : int m_C; }; class Son3 :private Base3{ public : void func () { m_A; m_B; } }; class GrandSon3 :public Son3{ public : void func () { } };
继承中的对象模型 示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 class Base { public : int m_A; protected : int m_B; private : int m_C; }; class Son :public Base{ public : int m_D; }; void test01 () { cout << "sizeof Son = " << sizeof (Son) << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
利用工具查看:
1、找到visual studio下面的vs2017的开发人员命令指示符
2、打开工具窗口后,定位到当前CPP文件的盘符,假如你的cpp文件在F盘那就先输入F:
3、然后输入cd 你的以.cpp为后缀代码文件的文件夹
4、然后输入dir,查看此文件夹中的文件目录
5、输入cl /d1 reportSingleClassLayout查看的类名 “所属文件名” (cl是字母cl,/d后面的是数字1,而且cl 和/d1之间有空格)
结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到
继承中构造和析构顺序 子类继承父类后,当创建子类对象,也会调用父类的构造函数
问题:父类和子类的构造和析构顺序是谁先谁后?
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 class Base { public : Base () { cout << "Base构造函数!" << endl; } ~Base () { cout << "Base析构函数!" << endl; } }; class Son : public Base{ public : Son () { cout << "Son构造函数!" << endl; } ~Son () { cout << "Son析构函数!" << endl; } }; void test01 () { Son s; } int main () { test01 (); system ("pause" ); return 0 ; }
总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
就是类似于先有爸爸,才生的出来儿子一样的
继承同名成员处理方式 问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?
访问子类同名成员 直接访问即可
访问父类同名成员 需要加作用域,格式即:类对象.父类类名 :: 父类中同名的函数( );
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 class Base {public : Base () { m_A = 100 ; } void func () { cout << "Base - func()调用" << endl; } void func (int a) { cout << "Base - func(int a)调用" << endl; } public : int m_A; }; class Son : public Base {public : Son () { m_A = 200 ; } void func () { cout << "Son - func()调用" << endl; } public : int m_A; }; void test01 () { Son s; cout << "Son下的m_A = " << s.m_A << endl; cout << "Base下的m_A = " << s.Base::m_A << endl; s.func (); s.Base::func (); s.Base::func (10 ); } int main () { test01 (); system ("pause" ); return EXIT_SUCCESS; }
总结:
子类对象可以直接访问到子类中同名成员
子类对象加作用域可以访问到父类同名成员
当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数
继承同名静态成员处理方式 问题:继承中同名的静态成员在子类对象上如何进行访问?
静态成员和非静态成员出现同名,处理方式一致
访问子类同名成员 直接访问即可
访问父类同名成员 需要加作用域
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 class Base {public : static void func () { cout << "Base - static void func()" << endl; } static void func (int a) { cout << "Base - static void func(int a)" << endl; } static int m_A; }; int Base::m_A = 100 ;class Son : public Base {public : static void func () { cout << "Son - static void func()" << endl; } static int m_A; }; int Son::m_A = 200 ;void test01 () { cout << "通过对象访问: " << endl; Son s; cout << "Son 下 m_A = " << s.m_A << endl; cout << "Base 下 m_A = " << s.Base::m_A << endl; cout << "通过类名访问: " << endl; cout << "Son 下 m_A = " << Son::m_A << endl; cout << "Base 下 m_A = " << Son::Base::m_A << endl; } void test02 () { cout << "通过对象访问: " << endl; Son s; s.func (); s.Base::func (); cout << "通过类名访问: " << endl; Son::func (); Son::Base::func (); Son::Base::func (100 ); } int main () { test02 (); system ("pause" ); return 0 ; }
总结:同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名)
切记在类外访问类内非静态成员函数的时候,不能通过类名::函数名 的方式直接访问,并且静态成员函数只能访问静态成员变量
多继承语法 C++允许一个类继承多个类
语法: class 子类 :继承方式 父类1 , 继承方式 父类2...
多继承可能会引发父类中有同名成员出现,需要加作用域区分
C++实际开发中不建议用多继承
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 class Base1 {public : Base1 () { m_A = 100 ; } public : int m_A; }; class Base2 {public : Base2 () { m_A = 200 ; } public : int m_A; }; class Son : public Base2, public Base1 { public : Son () { m_C = 300 ; m_D = 400 ; } public : int m_C; int m_D; }; void test01 () { Son s; cout << "sizeof Son = " << sizeof (s) << endl; cout << s.Base1::m_A << endl; cout << s.Base2::m_A << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
总结: 多继承中如果父类中出现了同名情况,子类使用时候要加作用域
菱形继承 菱形继承概念:
两个派生类继承同一个基类
又有某个类同时继承者两个派生类
这种继承被称为菱形继承,或者钻石继承
菱形继承问题:
羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以。
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 class Animal { public : int m_Age; }; class Sheep : virtual public Animal {};class Tuo : virtual public Animal {};class SheepTuo : public Sheep, public Tuo {};void test01 () { SheepTuo st; st.Sheep::m_Age = 100 ; st.Tuo::m_Age = 200 ; cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl; cout << "st.Tuo::m_Age = " << st.Tuo::m_Age << endl; cout << "st.m_Age = " << st.m_Age << endl; } int main () { test01 (); system ("pause" ); return 0 ; }
总结:
菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
利用虚继承可以解决菱形继承问题
多态 多态的基本概念 多态是C++面向对象三大特性之一
多态分为两类
静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
动态多态: 派生类和虚函数实现运行时多态
静态多态和动态多态区别:
静态多态的函数地址早绑定 - 编译阶段确定函数地址
动态多态的函数地址晚绑定 - 运行阶段确定函数地址
下面通过案例进行讲解多态
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 class Animal { public : virtual void speak () { cout << "动物在说话" << endl; } }; class Cat :public Animal{ public : void speak () { cout << "小猫在说话" << endl; } }; class Dog :public Animal{ public : void speak () { cout << "小狗在说话" << endl; } }; void DoSpeak (Animal & animal) { animal.speak (); } void test01 () { Cat cat; DoSpeak (cat); Dog dog; DoSpeak (dog); } int main () { test01 (); system ("pause" ); return 0 ; }
总结:
多态满足条件
多态使用条件
重写:函数返回值类型 函数名 参数列表 完全一致称为重写
多态案例一-计算器类 案例描述:
分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类
多态的优点:
代码组织结构清晰
可读性强
利于前期和后期的扩展以及维护
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 class Calculator {public : int getResult (string oper) { if (oper == "+" ) { return m_Num1 + m_Num2; } else if (oper == "-" ) { return m_Num1 - m_Num2; } else if (oper == "*" ) { return m_Num1 * m_Num2; } } public : int m_Num1; int m_Num2; }; void test01 () { Calculator c; c.m_Num1 = 10 ; c.m_Num2 = 10 ; cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult ("+" ) << endl; cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult ("-" ) << endl; cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult ("*" ) << endl; } class AbstractCalculator { public : virtual int getResult () { return 0 ; } int m_Num1; int m_Num2; }; class AddCalculator :public AbstractCalculator{ public : int getResult () { return m_Num1 + m_Num2; } }; class SubCalculator :public AbstractCalculator{ public : int getResult () { return m_Num1 - m_Num2; } }; class MulCalculator :public AbstractCalculator{ public : int getResult () { return m_Num1 * m_Num2; } }; void test02 () { AbstractCalculator *abc = new AddCalculator; abc->m_Num1 = 10 ; abc->m_Num2 = 10 ; cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult () << endl; delete abc; abc = new SubCalculator; abc->m_Num1 = 10 ; abc->m_Num2 = 10 ; cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult () << endl; delete abc; abc = new MulCalculator; abc->m_Num1 = 10 ; abc->m_Num2 = 10 ; cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult () << endl; delete abc; } int main () { test02 (); system ("pause" ); return 0 ; }
总结:
C++多态组织结构清晰,可读性强,便于前后期的扩展以及维护
使用条件:父类的 “指针” 或者 “子类” 指向子类对象
纯虚函数和抽象类 在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容,如果父类中的虚函数对项目的开发毫无用处,那就可以定义成一个纯虚函数 进行开发
纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点 :
无法实例化对象,只能通过指针
子类必须重写抽象(父)类中的纯虚函数,否则也属于抽象类
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 class Base { public : virtual void func () = 0 ; }; class Son :public Base{ public : virtual void func () { cout << "func调用" << endl; }; }; void test01 () { Base * base = NULL ; base = new Son; base->func (); delete base; } int main () { test01 (); system ("pause" ); return 0 ; }
多态案例二-制作饮品 案例描述:
制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料
利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶,实现烧、冲、倒、加等功能
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 class AbstractDrinking {public : virtual void Boil () = 0 ; virtual void Brew () = 0 ; virtual void PourInCup () = 0 ; virtual void PutSomething () = 0 ; void MakeDrink () { Boil (); Brew (); PourInCup (); PutSomething (); } }; class Coffee : public AbstractDrinking {public : virtual void Boil () { cout << "煮农夫山泉!" << endl; } virtual void Brew () { cout << "冲泡咖啡!" << endl; } virtual void PourInCup () { cout << "将咖啡倒入杯中!" << endl; } virtual void PutSomething () { cout << "加入牛奶!" << endl; } }; class Tea : public AbstractDrinking {public : virtual void Boil () { cout << "煮自来水!" << endl; } virtual void Brew () { cout << "冲泡茶叶!" << endl; } virtual void PourInCup () { cout << "将茶水倒入杯中!" << endl; } virtual void PutSomething () { cout << "加入枸杞!" << endl; } }; void DoWork (AbstractDrinking* drink) { drink->MakeDrink (); delete drink; } void test01 () { DoWork (new Coffee); cout << "--------------" << endl; DoWork (new Tea); } int main () { test01 (); system ("pause" ); return 0 ; }
虚析构和纯虚析构 多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构 或者纯虚析构
虚析构和纯虚析构共性:
可以解决父类指针释放子类对象
都需要有具体的函数实现
虚析构和纯虚析构区别:
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 class Animal {public : Animal () { cout << "Animal 构造函数调用!" << endl; } virtual void Speak () = 0 ; virtual ~Animal () = 0 ; }; Animal::~Animal () { cout << "Animal 纯虚析构函数调用!" << endl; } class Cat : public Animal {public : Cat (string name) { cout << "Cat构造函数调用!" << endl; m_Name = new string (name); } virtual void Speak () { cout << *m_Name << "小猫在说话!" << endl; } ~Cat () { cout << "Cat析构函数调用!" << endl; if (this ->m_Name != NULL ) { delete m_Name; m_Name = NULL ; } } public : string *m_Name; }; void test01 () { Animal *animal = new Cat ("Tom" ); animal->Speak (); delete animal; } int main () { test01 (); system ("pause" ); return 0 ; }
总结:
1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象的问题,并且纯虚析构和虚析构都需要进行声明和实现,来防止父类开辟堆区对象时的问题
2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3. 拥有纯虚析构函数的类也属于抽象类
多态案例三-电脑组装 案例描述:
电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)
将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商
创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作
示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 #include <iostream> using namespace std;class CPU { public : virtual void calculate () = 0 ; }; class VideoCard { public : virtual void display () = 0 ; }; class Memory { public : virtual void storage () = 0 ; }; class Computer { public : Computer (CPU * cpu, VideoCard * vc, Memory * mem) { m_cpu = cpu; m_vc = vc; m_mem = mem; } void work () { m_cpu->calculate (); m_vc->display (); m_mem->storage (); } ~Computer () { if (m_cpu != NULL ) { delete m_cpu; m_cpu = NULL ; } if (m_vc != NULL ) { delete m_vc; m_vc = NULL ; } if (m_mem != NULL ) { delete m_mem; m_mem = NULL ; } } private : CPU * m_cpu; VideoCard * m_vc; Memory * m_mem; }; class IntelCPU :public CPU{ public : virtual void calculate () { cout << "Intel的CPU开始计算了!" << endl; } }; class IntelVideoCard :public VideoCard{ public : virtual void display () { cout << "Intel的显卡开始显示了!" << endl; } }; class IntelMemory :public Memory{ public : virtual void storage () { cout << "Intel的内存条开始存储了!" << endl; } }; void test01 () { CPU * intelCpu = new IntelCPU; VideoCard * intelCard = new IntelVideoCard; Memory * intelMem = new IntelMemory; cout << "第一台电脑开始工作:" << endl; Computer * computer1 = new Computer (intelCpu, intelCard, intelMem); computer1->work (); delete computer1; }